a.
In order to calculate the angle of the refracted light, we can use the law of refraction below:
[tex]n_1\cdot\sin\theta_1=n_2\cdot\sin\theta_2[/tex]Where n1 and n2 are the index of refraction and theta1 and theta2 are the incident angle and angle of refraction.
So, using n1 = 1, n2 = 1.33 and theta1 = 35°, we have:
[tex]\begin{gathered} 1\cdot\sin\mleft(35°\mright)=1.33\cdot\sin\theta_2\\ \\ 0.5735764=1.33\cdot\sin\theta_2\\ \\ \sin\theta_2=\frac{0.5735764}{1.33}\\ \\ \sin\theta_2=0.43126\\ \\ \theta_2=25.55° \end{gathered}[/tex]b.
To find the velocity, we can use the formula below:
[tex]\begin{gathered} n=\frac{c}{v}\\ \\ 1=\frac{3\cdot10^8}{v}\\ \\ v=3\cdot10^8\text{ m/s} \end{gathered}[/tex]c.
Using the same formula from item b, but now using n2, we have:
[tex]\begin{gathered} n=\frac{c}{v}\\ \\ 1.33=\frac{3\cdot10^8}{v}\\ \\ v=\frac{3\cdot10^8}{1.33}\\ \\ v=2.256\cdot10^8\text{ m/s} \end{gathered}[/tex]