how do we find the values of x and y.

Given:
A matrix
[tex]\begin{bmatrix}{10x} & {} \\ {18} & {}\end{bmatrix}=\begin{bmatrix}{4} & {} \\ {6y} & {}\end{bmatrix}[/tex]Required:
To find the values of x and y.
Explanation:
Two matrices are said to be equivalent matrices if they have the same rank.
The given matrices are equivalent, so their corresponding element will be equal.
[tex]\begin{gathered} 10x=4 \\ x=\frac{4}{10} \\ x=\frac{2}{5} \end{gathered}[/tex][tex]\begin{gathered} 18=6y \\ y=\frac{18}{6} \\ y=3 \end{gathered}[/tex]Final Answer:
The values of x and y are as:
[tex]\begin{gathered} x=\frac{2}{5} \\ y=3 \end{gathered}[/tex]