Answer:
[tex]=1-log\left(1432590\right)[/tex]Step-by-step explanation:
By the logarithm properties:
[tex]\begin{gathered} \log_(a*b)=\log_a+logb \\ \log_(\frac{a}{b})=\text{ log a - log b} \\ \log_(a^b)=b\log_a \end{gathered}[/tex]Therefore, for the given logarithm:
[tex]\begin{gathered} 1-(log510+log53^2) \\ =1-(log510+log2809) \\ =1-log\left(1432590\right) \end{gathered}[/tex]