Respuesta :

The equation is given as,

[tex]2(x-3)+3=6x-5[/tex]

According to the distributive property,

[tex]a\cdot(b-c)=(a\cdot b)-(a\cdot c)[/tex]

Applying the property and resolving the parenthesis,

[tex]\begin{gathered} 2(x)-2(3)+3=6x-5 \\ 2x-6+3=6x-5 \\ 2x-3=6x-5 \end{gathered}[/tex]

Subtract 2x on both sides,

[tex]\begin{gathered} 2x-3-2x=6x-5-2x \\ -3+0=4x-5 \\ 4x-5=-3 \end{gathered}[/tex]

Add 5 on both sides,

[tex]\begin{gathered} 4x-5+5=-3+5 \\ 4x+0=2 \\ 4x=2 \end{gathered}[/tex]

Divide both sides by 4,

[tex]\begin{gathered} \frac{4x}{4}=\frac{2}{4} \\ x=\frac{1}{2} \end{gathered}[/tex]

Thus, the solution of the given equation is,

[tex]x=\frac{1}{2}[/tex]