Respuesta :

The equation of a line in slope intercept form is in the form,

[tex]y=mx+c[/tex]

SOLUTION

3) 2y - 6 = -6x

Add 6 to both sides

[tex]\begin{gathered} 2y-6+6=-6x+6 \\ 2y=-6x+6 \end{gathered}[/tex]

Divide through by 2

[tex]\begin{gathered} \frac{2y}{2}=-\frac{6x}{2}+\frac{6}{2} \\ y=-3x+3 \end{gathered}[/tex]

Hence, the equation in the slope intercept form is

[tex]y=-3x+3[/tex]

4) - 11x - 7y = -56

Add +11x to both sides

[tex]\begin{gathered} -11x-7y+11x=-56+11x \\ -7y-11x+11x=11x-56 \\ -7y=11x-56 \end{gathered}[/tex]

Divide both sides by - 7

[tex]\begin{gathered} \frac{-7y}{-7}=\frac{11x}{-7}-\frac{56}{-7} \\ y=-\frac{11x}{7}+8 \end{gathered}[/tex]

Hence, the equation in the slope intercept form is

[tex]y=-\frac{11x}{7}+8[/tex]