The function h is defined by Find h(x + 4) . h(x) = (3 + 2x)/(- 2 + x)

Answer:
h(x + 4) = (11 + 2x)/(2 + x)
Explanation:
The given expression is
[tex]h(x)=\frac{3+2x}{-2+x}[/tex]To find h(x + 4), we need to replace x by x + 4 on the expression above, so
[tex]h(x+4)=\frac{3+2(x+4)}{-2+(x+4_)}[/tex]Simplifying, we get
[tex]\begin{gathered} h(x+4)=\frac{3+2(x)+2(4)}{-2+x+4} \\ h(x+4)=\frac{3+2x+8}{(-2+4)+x} \\ h(x+4)=\frac{11+2x}{2+x} \end{gathered}[/tex]Therefore, the answer is
h(x + 4) = (11 + 2x)/(2 + x)