Respuesta :

Answer:

[tex]V=\pi^{}mi^3[/tex]

Explanation:

Step 1. Let h be the height of the cone:

[tex]h=3mi[/tex]

and let d be the diameter of the circle:

[tex]d=2mi[/tex]

From the diameter we can find the radius of the circle:

[tex]\begin{gathered} r=\frac{d}{2} \\ \downarrow\downarrow \\ r=\frac{2mi}{2} \\ \downarrow\downarrow \\ r=1mi \end{gathered}[/tex]

Step 2. To find the volume of a cone we use the following formula:

[tex]V=\frac{\pi r^2h}{3}[/tex]

Step 3. Substituting the values of r and h into the formula:

[tex]V=\frac{\pi(1mi)^2(3mi)}{3}[/tex]

Solving the operations:

[tex]\begin{gathered} V=\frac{\pi(1mi^2)(3mi)}{3} \\ \downarrow\downarrow \\ V=\frac{3\pi^{}}{3}mi^3 \end{gathered}[/tex]

The result is:

[tex]V=\pi^{}mi^3[/tex]

The volume is pi cubic miles.

Answer:

[tex]V=\pi^{}mi^3[/tex]