Respuesta :

Useful Formulas:

[tex]\begin{gathered} Area\text{ }of\text{ }triangle=\frac{1}{2}bh \\ Area\text{ }of\text{ }square=l^2 \end{gathered}[/tex]

SOLUTION

All four triangles are identical. They all have the following parameters:

[tex]\begin{gathered} b=16\text{ yd} \\ h=15\text{ yd} \end{gathered}[/tex]

Therefore, the areas are equal:

[tex]A_U=A_V=A_X=A_Y[/tex]

Hence, we can calculate the area to be:

[tex]A_U=\frac{1}{2}\times16\times15=120\text{ yd}^2[/tex]

The area of the base, W, is calculated to be:

[tex]\begin{gathered} l=16\text{ yd} \\ \therefore \\ A_W=16^2=256\text{ yd}^2 \end{gathered}[/tex]

The total surface area is calculated as:

[tex]A=A_U+A_V+A_W+A_X+A_Y[/tex]

Therefore, the total surface area will be:

[tex]\begin{gathered} A=120+120+256+120+120 \\ A=736\text{ yd}^2 \end{gathered}[/tex]

The total surface area is 736 square yards.