consider the following graph of an exponential function model in the geometric sequence 1 3 9 27 which of the following statements are valid based on the graph? Represents the growth of the factor of the function... select all correct choices

Solution
we will consider the option one after the other
Option A
When we considered the coordinates (0, 1) and (-1, 1/3)
the growth factor (or the common ratio r is )
Let T_n denotes the nth term
Here, n = 0
[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_0}{T_{-1}} \\ r=\frac{1}{(\frac{1}{3})} \\ r=1\div\frac{1}{3} \\ r=1\times\frac{3}{1} \\ r=3 \end{gathered}[/tex]Correct
Option B
When we considered the coordinates (1, 3) and (2, 9)
Here, n = 2
[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_2}{T_1} \\ r=\frac{9}{3} \\ r=3 \end{gathered}[/tex]False
Option C
When we considered the coordinates (3, 27) and (2, 9)
Here n = 3
[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_3}{T_2} \\ r=\frac{27}{9} \\ r=3 \end{gathered}[/tex]Correct
Option D
When we considered the coordinates (0, 1) and (-1, 1/3)
Here, n = 0
[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_0}{T_{-1}} \\ r=\frac{1}{(\frac{1}{3})} \\ r=1\div\frac{1}{3} \\ r=1\times\frac{3}{1} \\ r=3 \end{gathered}[/tex]False
Option E
When we considered the coordinates (3, 27) and (2, 9)
Here n = 3
[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_3}{T_2} \\ r=\frac{27}{9} \\ r=3 \end{gathered}[/tex]False
Option F
When we considered the coordinates (1, 3) and (2, 9)
Here, n = 2
[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_2}{T_1} \\ r=\frac{9}{3} \\ r=3 \end{gathered}[/tex]Correct