We have the following:
Let the 3 consecutive positive integers be:
[tex]\begin{gathered} x \\ x+1 \\ x+2 \end{gathered}[/tex]The product is:
[tex]x\cdot(x+1)\cdot(x+2)[/tex]The sum is:
[tex]x+x+1+x+2=3x+3[/tex]We're told the product is equivalent to:
[tex]\begin{gathered} x\cdot(x+1)\cdot(x+2)=16\cdot(3x+3) \\ x\cdot(x+1)\cdot(x+2)=16\cdot3(x+1) \\ x\cdot(x+2)=48 \\ x^2+2x=48 \\ x^2+2x-48=0 \end{gathered}[/tex]Now subtract the sum from the product:
[tex]\begin{gathered} x^2+2x-48-3x-3 \\ x^2-x-51 \end{gathered}[/tex]