Respuesta :

sin2x =12/13

cos2x = 5/13

tan2x = 12/5

STEP - BY - STEP EXPLANATION

What to find?

• sin2x

,

• cos2x

,

• tan2x

Given:

tanx = 2/3 = opposite / adjacent

We need to first make a sketch of the given problem.

Let h be the hypotenuse.

We need to find sinx and cos x, but to find sinx and cosx, first determine the value of h.

Using the Pythagoras theorem;

hypotenuse² = opposite² + adjacent²

h² = 2² + 3²

h² = 4 + 9

h² =13

Take the square root of both-side of the equation.

h =√13

This implies that hypotenuse = √13

We can now proceed to find the values of ainx and cosx.

Using the trigonometric ratio;

[tex]\sin x=\frac{opposite}{\text{hypotenuse}}=\frac{2}{\sqrt[]{13}}[/tex][tex]\cos x=\frac{adjacent}{\text{hypotenuse}}=\frac{3}{\sqrt[]{13}}[/tex]

And we know that tanx =2/3

From the trigonometric identity;

sin 2x = 2sinxcosx

Substitute the value of sinx , cosx and then simplify.

[tex]\sin 2x=2(\frac{2}{\sqrt[]{13}})(\frac{3}{\sqrt[]{13}})[/tex][tex]=\frac{12}{13}[/tex]

Hence, sin2x = 12/13

cos2x = cos²x - sin²x

Substitute the value of cosx, sinx and simplify.

[tex]\begin{gathered} \cos 2x=(\frac{3}{\sqrt[]{13}})^2-(\frac{2}{\sqrt[]{13}})^2 \\ \\ =\frac{9}{13}-\frac{4}{13} \\ =\frac{5}{13} \end{gathered}[/tex]

Hence, cos2x = 5/13

tan2x = 2tanx / 1- tan²x

[tex]\tan 2x=\frac{2\tan x}{1-\tan ^2x}[/tex][tex]=\frac{2(\frac{2}{3})}{1-(\frac{2}{3})^2}[/tex][tex]=\frac{\frac{4}{3}}{1-\frac{4}{9}}[/tex][tex]=\frac{\frac{4}{3}}{\frac{9-4}{9}}[/tex][tex]=\frac{\frac{4}{3}}{\frac{5}{9}}[/tex][tex]=\frac{4}{3}\times\frac{9}{5}=\frac{4}{1}\times\frac{3}{5}=\frac{12}{5}[/tex]

OR

[tex]\tan 2x=\frac{\sin 2x}{\cos 2x}=\frac{\frac{12}{13}}{\frac{5}{13}}=\frac{12}{5}[/tex]

Hence, tan2x = 12/5

Therefore,

sin2x =12/13

cos2x = 5/13

tan2x = 12/5

Ver imagen KahleahA697825