Respuesta :

Answer:

The rectangular equivalence is:

[tex](\frac{x-2}{4})^2+(\frac{y+1}{5})^2=1[/tex]

The interval of x is [-2, 6]

Explanation:

To find the rectangular equivalence, we want an equation of the form:

[tex]\cos^2(\theta)+\sin^2(\theta)=1[/tex]

Then, we have the equations:

[tex]\begin{gathered} x(\theta)=4\cos(\theta)+2 \\ y(\theta)=5\sin(\theta)-1 \end{gathered}[/tex]

On each equation, we solve for cos and sin:

[tex]\frac{x-2}{4}=\cos(\theta)[/tex][tex]\frac{x-2}{4}=\cos(\theta)[/tex][tex]\frac{y+1}{5}=\sin(\theta)[/tex]

Now we can square both sides:

[tex]\begin{gathered} (\frac{x-2}{4})^2=\cos^2(\theta) \\ \end{gathered}[/tex][tex](\frac{y+1}{5})^2=\sin^2(\theta)[/tex]

Now we can write:

[tex](\frac{x-2}{4})^2+(\frac{y+1}{5})^2=1[/tex]

That's the rectangular equivalence of the parametric equations.

Now, to find the interval where x falls under, we have:

[tex]x(\theta)=4\cos(\theta)+2[/tex]

In this function, the value of x depends only on of θ. The maximum value that cos(θ) is 1, when θ = 0

Then, if θ = 0, cos(θ) = 1

[tex]x(0)=4\cdot1+2=6[/tex]

The minimum value of cos(θ) is -1, when θ = π

If θ = π, cos(θ) = -1

Then:

[tex]x(\pi)=4\cdot(-1)+2=-2[/tex]

The interval is [-2, 6]