Respuesta :

Recall that:

1) The zeros of a polynomial function of the form:

[tex]p(x)=(x-a_1)\cdot\ldots\cdot(x-a_n)[/tex]

are:

[tex]a_1,\ldots,a_n\text{.}[/tex]

2) The set of zeros of a rational function of the form:

[tex]r(x)=\frac{(x-a_1)\cdot\ldots\cdot(x-a_n)}{(x-b_1)\cdot\ldots\cdot(x-b_m)}[/tex]

is:

[tex]\mleft\lbrace a_1,\ldots,a_n\mright\rbrace\text{ \backslash }\mleft\lbrace b_1,\ldots,b_m\rbrace\mright?.[/tex]

Therefore the zeros of F(x) are a and b, the zeros of T(x) are c and d.

Finally, since

[tex]a\ne b\ne c\ne d,[/tex]

then the zeros of J(x) are a and b.

Answer: F(x) and J(x) have the same set of zeros.