Respuesta :

We can use the sine definition to solve it for x

[tex]\begin{gathered} \sin B=\frac{\text{opposite}}{\text{hypotenuse}} \\ \\ \sin 45\degree=\frac{\text{x}}{17} \end{gathered}[/tex]

sin 45° is a known value, therefore

[tex]\begin{gathered} x=17\sin 45\degree \\ \\ \end{gathered}[/tex]

Remember that

[tex]\sin 45=\frac{\sqrt[]{2}}{2}[/tex]

Now we can use it to find it x

[tex]x=\frac{17\cdot\sqrt[]{2}}{2}[/tex]

There's nothing to simplify, we can write it as decimal if we want

[tex]x=\frac{17\, \sqrt[]{2}}{2}\approx12.02[/tex]

Final answer:

[tex]x=\frac{17\, \sqrt[]{2}}{2}\approx12.02[/tex]

Ver imagen MadiS138169