Respuesta :

Let's call x and y as the required numbers.

Their sum is 42, thus:

x + y = 42

Their product is 432, thus:

xy = 432

From the first equation, solve for x:

x = 42 - y

Substitute in the second equation:

(42 - y) y = 432

Multiplying:

[tex]42y-y^2=432[/tex]

Rearranging:

[tex]-y^2+42y-432=0[/tex]

We use the quadratic formula to find the solutions to this equation. For a=-1, b=42, and c=-432:

[tex]y=\frac{-42\pm\sqrt[]{42^2-4\cdot(-1)\cdot(-432)}}{2\cdot(-1)}[/tex]

Calculating:

[tex]\begin{gathered} y=\frac{-42\pm\sqrt[]{1764-1728}}{-2} \\ y=\frac{-42\pm\sqrt[]{36}}{-2} \\ y=\frac{-42\pm6}{-2} \end{gathered}[/tex]

Separate the two roots:

y = 24 , y = 18

If we use the first value, then x = 42 - 24 = 18

If we use the second value, then x = 42 - 18 = 24

In either case, the two integers are 18 and 24