Recall that congruent angles have the same measure.
Since ∠ABC≅∠EFG, then:
[tex]m\angle ABC=m\angle EFG.[/tex]Therefore:
[tex](4x+3)^{\circ}=(2x+11)^{\circ}.[/tex]Then:
[tex]4x+3=2x+11.[/tex]Adding -3-2x to the above equation we get:
[tex]\begin{gathered} 4x+3-3-2x=2x+11-3-2x, \\ 2x=8. \end{gathered}[/tex]Dividing the above equation by 2 we get:
[tex]\begin{gathered} \frac{2x}{2}=\frac{8}{2}, \\ x=4. \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} m\angle ABC=(4*4+3)^{\circ}=(16+3)^{\circ}=19^{\circ}, \\ m\angle EFG=(2*4+11)^{\circ}=(8+11)^{\circ}=19^{\circ}. \end{gathered}[/tex]Answer:
[tex]\begin{gathered} m\angle ABC=19^{\circ}, \\ m\angle EFG=19^{\circ}. \end{gathered}[/tex]