Respuesta :

Solution:

From the square-shaped table below:

Provided that the area of the table is

[tex]\frac{144}{64}\text{ square meters}[/tex]

To find the length of a side of the table, recall that the area of a square is expressed as

[tex]\begin{gathered} area\text{ of square = L}^2 \\ where \\ L\Rightarrow length\text{ of a side} \end{gathered}[/tex]

This implies that

[tex]\begin{gathered} \frac{144}{64}=L^2 \\ Take\text{ the square root of both sides,} \\ \sqrt{\frac{144}{64}}=\sqrt{L^2} \\ L=\frac{12}{8} \\ in\text{ its lowest term, we have} \\ L=\frac{3}{2}\text{ meters} \end{gathered}[/tex]

Hence, the length of a side is

[tex]\frac{3}{2}\text{ meters}[/tex]

The third option is the correct option.

Ver imagen MartinaI384350