what is the the sum of the infinite geometric series 3, 2, 4/3, ... ?

Formula:
[tex]s=\frac{a_1}{(1-q)}_{}[/tex]here a1=3
q=2:3(ration of second number and first number)
[tex]q=\frac{2}{3}[/tex]Therefore,
[tex]s=\frac{3}{(1-\frac{2}{3})}=\frac{3}{\frac{1}{3}}=9[/tex]Sum=9