Respuesta :

Given:

A quadratic equation is given as

[tex]2x^2+3x-4=0[/tex]

Required:

Apply quadratic formula

Explanation:

we have given hat

[tex]2x^{2}+3x-4=0[/tex]

now compare the given equation with

[tex]ax^2+bx+c=0[/tex]

and we get

[tex]\begin{gathered} a=2 \\ b=3 \\ c=-4 \end{gathered}[/tex]

the roots are given as

[tex]x=\frac{-b\pm\sqrt[\placeholder{⬚}]{b^2-4ac}}{2a}[/tex][tex]\begin{gathered} =\frac{-3\pm\sqrt{3^2-4*2*-4}}{2*2} \\ =\frac{-3\pm\sqrt[\placeholder{⬚}]{41}}{4} \end{gathered}[/tex]

Final answer:

[tex]\begin{gathered} x_1=\frac{-3+\sqrt[\placeholder{⬚}]{41}}{4},x_2=\frac{-3-\sqrt[\placeholder{⬚}]{41}}{4} \\ \end{gathered}[/tex]