SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given vertices of the polygon
[tex]\begin{gathered} A(-4,6) \\ B(-2,2) \\ C(4,-2) \\ D(4,4) \end{gathered}[/tex]STEP 2: Write the given scale factor
[tex]scale-factor=\frac{1}{8}[/tex]STEP 3: Find the vertices of the new polygon A′B′C′D′
To get the new vertices, we multiply the old vertices by the given scale factor, therefore,
[tex]\begin{gathered} A^{\prime}=(\frac{1}{8}\times-4,\frac{1}{8}\times6)=(-0.5,0.75) \\ \\ B^{\prime}=(\frac{1}{8}\times-2,\frac{1}{8}\times2)=(-\frac{2}{8},\frac{2}{8})=(-0.25,0.25) \\ \\ C^{\prime}=(\frac{1}{8}\times4,\frac{1}{8}\times-2)=(0.5,-0.25) \\ \\ D^{\prime}=(\frac{1}{8}\times4,\frac{1}{8}\times4)=(0.5,0.5) \end{gathered}[/tex]Hence, the vertices of polygon A′B′C′D′ are given as:
[tex]A^{\prime}\left(−0.5,\:0.75\right),\:B^{\prime}\left(−0.25,\:0.25\right),\:C^{\prime}\left(0.5,\:−0.25\right),\:D^{\prime}\left(0.5,\:0.5\right)[/tex]