Remember the following transformation rules for functions:
Vertical translation up c units:
[tex]f(x)\rightarrow f(x)+c[/tex]
Vertical translation down c units:
[tex]f(x)\rightarrow f(x)-c[/tex]
Horizontal translation left c units:
[tex]f(x)\rightarrow f(x+c)[/tex]
Horizontal translation right c units:
[tex]f(x)\rightarrow f(x-c)[/tex]
If the given function, f(x)=|x| must be shifted down 3 units and to the right 1 unit, then, substract 3 from the function and substract 1 from the argument of the function.
First, perform a vertical translation down 3 units:
[tex]|x|\rightarrow|x|-3[/tex]
Next, perform a horizontal translation right 1 unit:
[tex]|x|-3\rightarrow|x-1|-3[/tex]
Therefore, the new equation is:
[tex]f(x)=|x-1|-3[/tex]