Given,
Distance, S = 184 m
The displacement equation is given by,
[tex]S=ut+\frac{1}{2}gt^2[/tex]Here, u is the initial velocity of the stone which is equal to zero, g is the acceleration due to gravity calculated as
[tex]g=9.8m/s^2[/tex]Substitute the given values,
[tex]\begin{gathered} 184\text{ m = o+}\frac{1}{2}\times9.8m/s^2\times t^2 \\ t^2=\frac{184\times2}{9.8} \\ t^2=37.55 \\ t=6.127\text{ s} \end{gathered}[/tex]The fall time is 6.127 s.
Now,
[tex]S=v\times t[/tex]Here, v is the speed of sound in the air 343 m/s.
[tex]\begin{gathered} 184\text{ = 343}\times t \\ t=\frac{184}{343} \\ t=0.536\text{ s} \end{gathered}[/tex]Calculate the time from when she hears it hit the bottom of the shaft is
[tex]\begin{gathered} T=6.127\text{ s + 0.536 s} \\ T=6.663\text{ s} \end{gathered}[/tex]