Respuesta :

Given:

The function is,

[tex]h\mleft(x\mright)=x^2-9x+26[/tex]

To find:

The average rate of change over the interval

[tex]-10\leq x\leq-2[/tex]

Explanation:

Using the formula,

[tex]Average\text{ rate of function}=\frac{f(b)-f(a)}{b-a}[/tex]

Here,

[tex]\begin{gathered} a=-10 \\ b=-2 \end{gathered}[/tex]

The average rate of the function becomes,

[tex]\begin{gathered} Average\text{ rate of function}=\frac{f(-2)-f(-10)}{-2-(-10)} \\ =\frac{(-2)^2-9(-2)+26-((-10)^2-9(-10)+26)}{-2+10} \\ =\frac{4+18+26-(100+90+26)}{8} \\ =\frac{48-216}{8} \\ =\frac{-168}{8} \\ =-21 \end{gathered}[/tex]

Therefore, the average rate of change of the function is -21.

Final answer:

The average rate of change of the function is -21.