Respuesta :

Answer:

the solution to the system of equation is;

[tex]\begin{gathered} x=7 \\ y=5 \end{gathered}[/tex]

Exp

Given the system of equation;

[tex]\begin{gathered} x-4y=-13\text{ --------1} \\ x-2y=-3\text{ --------2} \end{gathered}[/tex]

We want to solve by elimination.

subtract equation 1 from equation 2;

[tex]\begin{gathered} x-x-2y-(-4y)=-3-(-13) \\ -2y+4y=-3+13 \\ 2y=10 \\ \text{divide both sides by 2;} \\ \frac{2y}{2}=\frac{10}{2} \\ y=5 \end{gathered}[/tex]

If y=5, then the value of x can be derived using equation 2 as;

[tex]\begin{gathered} x-2y=-3 \\ x-2(5)=-3 \\ x-10=-3 \\ x=-3+10 \\ x=7 \end{gathered}[/tex]

Therefore, the solution to the system of equation is;

[tex]\begin{gathered} x=7 \\ y=5 \end{gathered}[/tex]