we have the following:
[tex]p=2\cdot l+2\cdot w[/tex]therefore:
[tex]\begin{gathered} 2\cdot(5x+1.3)+2\cdot(2x+0.3)=2\cdot(4x-1.2)+2\cdot(4x-0.1) \\ 10x+2.6+4x+0.6=8x-2.4+8x-0.2 \\ 8x+8x-10x-4x=2.6+0.6+2.4+0.2 \\ 2x=5.8 \\ x=\frac{5.8}{2} \\ x=2.9 \end{gathered}[/tex]therefore, the value of x is 2.9