For the functions below, determine what type of solution each equation has.

Okay, we have three equations:
In the first if we clear x we have:
[tex]x=\pm\sqrt[]{-9}[/tex]So, that is:
[tex]x=3i,\text{ x=-3i}[/tex]f(x) has complex solutions.
In the second if we clear x, we have:
[tex](x-9)^2=0[/tex][tex]x-9=0[/tex][tex]x=9[/tex]g(x) has 1 real solution.
In the third if we clear x, we have:
[tex](x+1)^2-9=0[/tex][tex](x+1)^2=9[/tex][tex]x+1=\pm\sqrt[]{9}[/tex][tex]x+1=+3,\text{ x+1=-3}[/tex][tex]x=2,\text{ x=-}4[/tex]
So, h(x) has 2 real solutions.