Respuesta :

The vertices of the given figure are:

[tex]C(-7,-7),D(-2,-7),E(-2,-5),F(-7,-5)[/tex]

Recall that the coordinate rule for 270⁰ clockwise rotation around the origin is:

[tex](x,y)\rightarrow(-y,x))[/tex]

Apply this rule to the first vertex C(-7,-7):

[tex]\begin{gathered} C(-7,-7)\rightarrow C^{\prime}(-(-7),-7) \\ \Rightarrow C^{\prime}=(7,-7) \end{gathered}[/tex]

Apply the same rule to other vertices to get:

[tex]\begin{gathered} D^{\prime}(7,-2) \\ E^{\prime}(5,-2) \\ F^{\prime}(5,-7) \end{gathered}[/tex]

Answer:

C'=(7,-7)

D'=(7,-2)

E'=(5,-2)

F'=(5,-7)