Respuesta :

Question: Find the distance between the points (4, 4) and (1,8).

Solution:

Remember that the distance formula is given by:

[tex]d\text{ = }\sqrt[]{(X2_{}-X1_{}\text{ }_{})^2\text{ + }(Y2_{}-Y1_{}\text{ }_{})^2\text{ }}[/tex]

In our case, we have that

(X1, Y1) = (4,4)

(X2,Y2) = (1,8)

Replacing these values in the distance formula we obtain:

[tex]d\text{ = }\sqrt[]{(1-4_{}\text{ }_{})^2\text{ + }(8-4\text{ }_{})^2\text{ }}\text{ = }\sqrt[]{(-3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}\text{ =}\sqrt[]{(3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}\text{ }[/tex]

that is:

[tex]d\text{ = }\sqrt[]{(3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}=\sqrt[]{9\text{ + 16}^{}\text{ }}\text{ }=\sqrt[]{25\text{ }}\text{ = 5}[/tex]

then, we can conclude that the distance between the points (4,4) and (1,8) is 5.