Respuesta :

Step 1: Write out the coordinates of the vertices of the triangles

For Triangle STU

S: (-0.5, -0.5)

T:(-1,-1.5)

U:(-1.25,-0.5)

For Triangle PQR

P:(-1,1)

Q:(-2,3)

R:(-2.5,1)

Step 2: Find the coordinate of the vertices of the triangle that was reflected to get ΔSTU

Let the coordinates of this triangle be S'T'U'

Let P be the reflection rule about the x-axis. Then P is defined as

[tex]P\colon(x,y)\to(x,-y)[/tex]

Hence, the inverse of P, say Q, is defined as

[tex]Q\colon(x,y)\to(x,-y)[/tex]

Hence,

[tex]\begin{gathered} \text{ The coordinates of S' }=Q(-0.5,-0.5)=(-0.5,0.5) \\ \text{The coordinates of T' }=Q(-1,-1.5)=(-1,1.5) \\ \text{The coordinates of U' }=Q(-1.25,-0.5)=(-1.25,0.5) \end{gathered}[/tex]