How do you know that △STU is similar to △PQR? Complete the sentence to explain your answer. HELP ASPAP!

Step 1: Write out the coordinates of the vertices of the triangles
For Triangle STU
S: (-0.5, -0.5)
T:(-1,-1.5)
U:(-1.25,-0.5)
For Triangle PQR
P:(-1,1)
Q:(-2,3)
R:(-2.5,1)
Step 2: Find the coordinate of the vertices of the triangle that was reflected to get ΔSTU
Let the coordinates of this triangle be S'T'U'
Let P be the reflection rule about the x-axis. Then P is defined as
[tex]P\colon(x,y)\to(x,-y)[/tex]Hence, the inverse of P, say Q, is defined as
[tex]Q\colon(x,y)\to(x,-y)[/tex]Hence,
[tex]\begin{gathered} \text{ The coordinates of S' }=Q(-0.5,-0.5)=(-0.5,0.5) \\ \text{The coordinates of T' }=Q(-1,-1.5)=(-1,1.5) \\ \text{The coordinates of U' }=Q(-1.25,-0.5)=(-1.25,0.5) \end{gathered}[/tex]