Evaluate. S (1222 +7+-5) dt 0 24t + 7 + C O 6 +7t2 - 5t +C O 12+ + 7+2 - 5t + C 412 +222-5t+C

Evaluate
[tex]\int (12t^2\text{ + 7t -5) dt }[/tex]__________________________________________________
Rule
[tex]\int (t^n\text{) dt = }\frac{t^{n+1}}{n+1}[/tex]______________________________
So then,
[tex]\int (t^2\text{) dt = }\frac{t^{2+1}}{2+1}=\frac{1}{3}t^3[/tex][tex]\int (t^{}\text{) dt = }\frac{t^{1+1}}{1+1}=\frac{1}{2}t^2[/tex]________________________
Answer
[tex]\int (12t^2\text{ + 7t -5) dt }=\text{ }\frac{12}{3}t^{3\text{ }}+\frac{7}{2}t^2\text{ - 5 t +c= }4t^{3\text{ }}+\frac{7}{2}t^2\text{ - 5 t +c}[/tex]