Respuesta :
Answer:
(a)C and E
(b)4.8 times
Explanation:
Part A
First, calculate the volumes of all the given solids:
Cylinder 1
[tex]\begin{gathered} V=\pi r^2h=\pi\times6^2\times5=180\pi \\ \approx565\; in^3 \end{gathered}[/tex]Cylinder 2
[tex]\begin{gathered} V=\pi r^2h=\pi\times6^2\times15=540\pi \\ \approx1696\; in^3 \end{gathered}[/tex]Cone 1
[tex]\begin{gathered} V=\frac{1}{3}\pi r^2h=\frac{1}{3}\times\pi\times6^2\times5=60\pi \\ \approx188\; in^3 \end{gathered}[/tex]Cone 2
[tex]\begin{gathered} V=\frac{1}{3}\pi r^2h=\frac{1}{3}\times\pi\times6^2\times15=180\pi \\ \approx565\; in^3 \end{gathered}[/tex]Sphere
[tex]\begin{gathered} V=\frac{4}{3}\pi r^3=\frac{4}{3}\times\pi\times6^3=288\pi \\ \approx905\; in^3 \end{gathered}[/tex]The figures that have a volume greater than 600 cubic inches are:
• C Cylinder #2
,• E Sphere
Part B
[tex]\begin{gathered} \frac{\text{Volume of Sphere}}{\text{Volume of Cone 1}}=\frac{288\pi}{60\pi} \\ =4.8 \end{gathered}[/tex]The volume of the sphere is 4.8 times the volume of Cone 1.