Part AWhich figures have a volume greater than 600 cubic inches?A Cylinder #1BCone #1c Cylinder #2D Cone #2E Sphere(b)Part BHow many times greater is the volume of the Sphere than the volume of Cone#1? Round your answer to the nearest tenth.Enter your answer in the boxHi

Respuesta :

Answer:

(a)C and E

(b)4.8 times

Explanation:

Part A

First, calculate the volumes of all the given solids:

Cylinder 1

[tex]\begin{gathered} V=\pi r^2h=\pi\times6^2\times5=180\pi \\ \approx565\; in^3 \end{gathered}[/tex]

Cylinder 2

[tex]\begin{gathered} V=\pi r^2h=\pi\times6^2\times15=540\pi \\ \approx1696\; in^3 \end{gathered}[/tex]

Cone 1

[tex]\begin{gathered} V=\frac{1}{3}\pi r^2h=\frac{1}{3}\times\pi\times6^2\times5=60\pi \\ \approx188\; in^3 \end{gathered}[/tex]

Cone 2

[tex]\begin{gathered} V=\frac{1}{3}\pi r^2h=\frac{1}{3}\times\pi\times6^2\times15=180\pi \\ \approx565\; in^3 \end{gathered}[/tex]

Sphere

[tex]\begin{gathered} V=\frac{4}{3}\pi r^3=\frac{4}{3}\times\pi\times6^3=288\pi \\ \approx905\; in^3 \end{gathered}[/tex]

The figures that have a volume greater than 600 cubic inches are:

• C Cylinder #2

,

• E Sphere

Part B

[tex]\begin{gathered} \frac{\text{Volume of Sphere}}{\text{Volume of Cone 1}}=\frac{288\pi}{60\pi} \\ =4.8 \end{gathered}[/tex]

The volume of the sphere is 4.8 times the volume of Cone 1.