Respuesta :

ANSWER

(2, 6)

EXPLANATION

To find the endpoint that is missing, we have to state the formula for midpoint between two points:

[tex](x,\text{ y) = (}\frac{x_1+x_2}{2},\text{ }\frac{y_1+y_2}{2})[/tex]

where (x, y) = cordinates of midpoint

(x1, y1) and (x2, y2) are cordinates of the endpoints

So, we have that:

[tex](-2,\text{ 0) = (}\frac{-6+x_2}{2},\text{ }\frac{-6+y_2}{2})[/tex]

Now, we split the x and y cordinates:

[tex]\begin{gathered} \text{For x:} \\ \Rightarrow\text{ -2 = }\frac{-6+x_2}{2} \\ Cross-multiply\colon \\ \Rightarrow\text{ -2 }\cdot2=-6+x_2 \\ \Rightarrow-4=-6+x_2 \\ \Rightarrow\text{ }x_2\text{ = -4 + 6} \\ x_2\text{ = 2} \end{gathered}[/tex][tex]\begin{gathered} \text{For y:} \\ 0\text{ = }\frac{-6+y_2}{2} \\ \text{Cross multiply:} \\ 0\cdot2=-6+y_2 \\ 0=-6+y_2 \\ \Rightarrow y_2\text{ = 6} \end{gathered}[/tex]

Therefore, the cordinates of the second endpoint is (2, 6)