The equations 20x +12y = 140 and 45x +20y = 280 represent the cost for lunch and dinner for a family eating out on vacation. If x is the number of adults and y is the number of children, how many adults are in the family?425

Respuesta :

Given the equations:

[tex]\begin{gathered} 20x+12y=140\text{ \lparen1\rparen} \\ 45x+20y=280\text{ \lparen2\rparen} \end{gathered}[/tex]

Where,

x= Number of adults.

y= Number of children.

Isolating y in the equation (1):

[tex]\begin{gathered} 20x+12y=140 \\ 12y=140-20x \\ y=\frac{140-20x}{12}\text{ \lparen3\rparen} \end{gathered}[/tex]

Replacing the equation (3) in equation (2).

[tex]\begin{gathered} 45x+20y=280 \\ 45x+20*(\frac{140-20x}{12})=280 \end{gathered}[/tex]

Simplifying:

[tex]\begin{gathered} 45x+\frac{20*140-20*20x}{12}=280 \\ \\ 45x+\frac{2800-400x}{12}=280 \\ \\ \frac{45*12x+2800-400x}{12}=280 \end{gathered}[/tex]

[tex]540x+2800-400x=12*280[/tex]

Finally, solving for x:

[tex]\begin{gathered} 140x=3360-2800 \\ 140x=560 \\ x=\frac{560}{140}=\frac{56}{14}=4 \end{gathered}[/tex]

The number the adults is x=4.

And the number of children is:

[tex]\begin{gathered} y=\frac{140-20(4)}{12}=5 \\ \end{gathered}[/tex]