Respuesta :

Answer:

Explanation:

From the graph, we can read off the vertices of triangle KLM as;

[tex]\begin{gathered} K(0,4) \\ L(9,4) \\ M(-1,-6) \end{gathered}[/tex]

To translate 1 unit right, we have to add 1 to each of the x-coordinates of the vertices of triangle KLM.

To translate 4 units down, we have to subtract 4 from each of the y-coordinates of the vertices of triangle KLM.

So we'll have;

[tex]K^{\prime}(0+1,4-4)\rightarrow K^{\prime}(1,0)[/tex][tex]L^{\prime}(9+1,4-4)\rightarrow L^{\prime}(10,0)[/tex][tex]M^{\prime}(-1+1,-6-4)\rightarrow M^{\prime}(0,-10)[/tex]

Therefore, the graph of t