Find the coordinates of the circumcenter of the triangle with the vertices A(4,12) B(14,6) and C(-6,2) This is problem number 4. I tried to graph it to the best of my ability. Image is down below.

Find the coordinates of the circumcenter of the triangle with the vertices A412 B146 and C62 This is problem number 4 I tried to graph it to the best of my abil class=

Respuesta :

The circumcenter can be found as the intersection of the perpendicular bisectors.

The middle points of each one of the segments are

[tex]\begin{gathered} AB=(\frac{4+14}{2},\frac{12+6}{2})=(9,9) \\ BC=(\frac{14-6}{2},\frac{6+2}{2})=(4,4) \\ CA=(\frac{-6+4}{2},\frac{2+12}{2})=(-1,7) \\ \text{Where we used the formula} \\ M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}) \end{gathered}[/tex]

Furthermore, the slopes of each one of the three segments are

[tex]\begin{gathered} m_{AB}=\frac{6-12}{14-4}=-\frac{6}{10}=-\frac{3}{5} \\ m_{BC}=\frac{6-2}{14+6}=\frac{4}{20}=\frac{1}{5} \\ m_{CA}=\frac{2-12}{-6-4}=-\frac{10}{-10}=1 \\ \text{where we used the formula} \\ m=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]

In general, two lines are perpendicular if the product of their slopes is equal to -1. Then, the slopes of a perpendicular line to each one of the segments are

[tex]\begin{gathered} m^{\prime}_{AB}=\frac{5}{3} \\ m^{\prime}_{BC}=-5 \\ m^{\prime}_{CA}=-1 \end{gathered}[/tex]

Given a point on a line and its slope, we can calculate the equation of any line. In our case,

[tex]\begin{gathered} bisectorofAB\colon y-9=\frac{5}{3}(x-9) \\ \Rightarrow bisectorofAB\colon y=\frac{5}{3}x-6 \\ bisectorofBC\colon y-4=-5(x-4)_{} \\ \Rightarrow bisectorofBC\colon y=-5x+24 \end{gathered}[/tex]

Finally, calculate the intersection point of lines AB and BC as shown below

[tex]\begin{gathered} y=\frac{5}{3}x-6,y=-5x+24 \\ \Rightarrow\frac{5}{3}x-6=-5x+24 \\ \Rightarrow\frac{5}{3}x+5x=30 \\ \Rightarrow\frac{20}{3}x=30 \\ \Rightarrow x=\frac{9}{2} \\ \Rightarrow y=-5(\frac{9}{2})+24=\frac{3}{2} \\ \Rightarrow y=\frac{3}{2} \\ \Rightarrow(\frac{9}{2},\frac{3}{2})\to\text{circumcenter} \end{gathered}[/tex]

The answer is (9/2,3/2)

[tex]\begin{cases}y=\frac{5x}{3}-6 \\ y=-5x+24\end{cases}[/tex]

Remember that (properties of equality)

[tex]\begin{gathered} a=b\Rightarrow a+c=b+c \\ \text{and} \\ a=b\Rightarrow a\cdot c=b\cdot c \end{gathered}[/tex]

From the system of equations,

[tex]\begin{gathered} y=y \\ \Rightarrow\frac{5x}{3}-6=-5x+24 \end{gathered}[/tex]

Then, add +6 to both sides of the equation,

[tex]\begin{gathered} \frac{5x}{3}-6+6=-5x+24+6 \\ \Rightarrow\frac{5x}{3}=-5x+30 \end{gathered}[/tex]

Add +5x to both sides of the equation,

[tex]\begin{gathered} \frac{5x}{3}+5x=-5x+30+5x \\ \Rightarrow\frac{20x}{3}=30 \end{gathered}[/tex]

Multiply both sides of the equation by 3

[tex]\begin{gathered} \frac{20x}{3}=30 \\ \Rightarrow20x=90 \end{gathered}[/tex]

Finally, multiply both sides of the equation by 1/20

[tex]\begin{gathered} 20x=90 \\ \Rightarrow\frac{1}{20}\cdot20x=\frac{1}{20}\cdot90 \\ \Rightarrow x=\frac{90}{20} \end{gathered}[/tex]

There was no need to use negative reciprocals.