Respuesta :

A perfect square trinomial has the following structure:

[tex]a^2\cdot x^2+2\cdot a\cdot b\cdot x+b^2[/tex]

We were given the expression:

[tex]x^2-15x+c[/tex]

By comparing both expressions we know that:

[tex]\begin{gathered} a=1 \\ 2\cdot a\cdot b=-15 \end{gathered}[/tex]

We can replace the value of a on the second expression to find b.

[tex]\begin{gathered} 2\cdot1\cdot b=-15 \\ 2\cdot b=-15 \\ b=\frac{-15}{2}=-7.5 \end{gathered}[/tex]

The value of c is:

[tex]\begin{gathered} c=b^2 \\ c=(-7.5)^2=56.25 \end{gathered}[/tex]

Therefore the perfect square trinomial is:

[tex]x^2-15x+56.25[/tex]

It can be written as the following binomial squared:

[tex]x^2-2\cdot7.5\cdot x+(7.5)^2=(x-7.5_{})^2[/tex]