Given:
The distance between the sun and mars is
[tex]\begin{gathered} d=143.82\text{ million miles} \\ =143.82\times10^6\text{ miles} \end{gathered}[/tex]The sun has mass
[tex]m_s=1.99\times10^{30}\text{ kg}[/tex]The mass of mars is
[tex]m_m=6.42\times10^{23}\text{ kg}[/tex]To find:
The gravitational force of the sun on mars
Explanation:
The gravitational force between two objects is,
[tex]\begin{gathered} F=\frac{Gm_1m_2}{d^2} \\ G=6.67\times10^{-11}\text{ N.m}^2.kg^{-2} \end{gathered}[/tex]The distance between the sun and mars is, (the distance here is between the centres of the celestial bodies so we need not add the radii here)
[tex]d=143.82\times10^6\times1609.34\text{ m}[/tex]Substituting the values we get,
[tex]\begin{gathered} F=\frac{6.67\times10^{-11}\times1.99\times10^{30}\times6.42\times10^{23}}{(143.82\times10^6\times1609.34)^2} \\ =1.59\times10^{21}\text{ N} \end{gathered}[/tex]Hence, the gravitational force is
[tex]1.59\times10^{21}\text{ N}[/tex]