Respuesta :

Answer:

[tex]\tan \theta=-\frac{48}{55}[/tex]

Explanation:

Given that;

[tex]\begin{gathered} \sin \theta=-\frac{48}{73} \\ \cos \theta=\frac{55}{73} \end{gathered}[/tex]

Recall that;

[tex]\begin{gathered} \sin \theta=\frac{opposite}{hypotenuse} \\ \cos \theta=\frac{adjacent}{hypotenuse} \\ \tan \theta=\frac{opposite}{adjacent} \\ \tan \theta=\frac{\sin \theta}{\cos \theta} \end{gathered}[/tex]

Substituting the given values of sine and cosine;

[tex]\begin{gathered} \tan \theta=\frac{-\frac{48}{73}}{\frac{55}{73}}=-\frac{48}{73}\times\frac{73}{55} \\ \tan \theta=-\frac{48}{55} \end{gathered}[/tex]

Therefore;

[tex]\tan \theta=-\frac{48}{55}[/tex]