ANSWER
[tex]\begin{equation*} 3.66\text{ feet} \end{equation*}[/tex]
EXPLANATION
We want to find the distance between points A and B i.e. AB.
To do this, we have to find the lengths of AC, and BC and then, find the difference between them:
[tex]AB=AC-BC[/tex]
To find the length of BC, apply trigonometric ratios, SOHCAHTOA, for triangle DBC for tangent:
[tex]\begin{gathered} \tan30=\frac{opposite}{adjacent} \\ \\ \tan30=\frac{BC}{5\sqrt{3}} \\ \\ BC=5\sqrt{3}*\tan30 \\ \\ BC=5\text{ }ft \end{gathered}[/tex]
To find the length of AC, apply trigonometric ratios, SOHCAHTOA, for triangle DAC for tangent:
[tex]\begin{gathered} \tan(45)=\frac{AC}{5\sqrt{3}} \\ \\ \tan45=\frac{AC}{5\sqrt{3}} \\ \\ AC=5\sqrt{3}*\tan45 \\ \\ AC=8.66\text{ }ft \end{gathered}[/tex]
Therefore, the distance between points A and B is:
[tex]\begin{gathered} AB=8.66-5 \\ \\ AB=3.66\text{ feet} \end{gathered}[/tex]
That is the answer.