Respuesta :

EXPLANATION

Since we have the expression:

(x + a)^2 = b

And the quadratic expression:

[tex]x^2-7x\text{ = -9x - 2}[/tex]

Adding +2 to both sides:

[tex]x^2-7x\text{ +2 = -9x}[/tex]

Adding +9x to both sides:

[tex]x^2+2x+2=0[/tex]

Now, rewriting the expression:

[tex]x^2+2x=-2[/tex]

Now, completing the square of:

[tex]x^2+bx=c[/tex]

We need to add b^2/4 to both sides:

[tex]\frac{2^2}{4}=\frac{4}{4}=1[/tex]

Now, we get:

[tex]x^2+2x+1=-2+1[/tex]

and get:

[tex](x+1)^2=-1[/tex]

Therefore, we need to take square roots of the expression to get:

[tex]\sqrt{(x+1)^2}=\sqrt{-1}[/tex][tex]x+1=i[/tex]

Isolating x:

[tex]x=-1\pm i[/tex]

Therefore:

[tex]x^2+2x+2=[/tex][tex]=(-1+i)(-1-i)[/tex]