Respuesta :

The given equation is,

[tex]x^4+3x^2-4=0\ldots\ldots.(1)[/tex]

Let

[tex]y=x^2[/tex]

Then, equation (1) becomes,

[tex]y^2+3y-4=0\ldots\ldots..(2)[/tex]

The general form of a quadratic equation can be written as,

[tex]ay^2+by+c=0\ldots\ldots..(3)[/tex]

Comparing equations (2) and (3), we get a=1, b=3 and c=-4.

Hence, the solution for equation (2) can be calculated using discriminant method as

[tex]\begin{gathered} y=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y=\frac{-3\pm\sqrt[]{3^2-4\times1\times(-4)}}{2\times1} \\ y=\frac{-3\pm\sqrt[]{9+16}}{2} \\ y=\frac{-3\pm\sqrt[]{25}}{2} \\ y=\frac{-3\pm5}{2} \\ y=\frac{-3+5}{2}\text{ or y=}\frac{-3-5}{2} \\ y=\frac{2}{2}\text{ or }y=\frac{-8}{2} \\ y=1\text{ or }y=-4 \end{gathered}[/tex]

We had defined y as,

[tex]x^2=y\ldots\ldots(4)[/tex]

Put y=1 and y=-4 in the above equation to find the values of x.

Putting y=1,

[tex]\begin{gathered} x^2=1 \\ x=\pm\sqrt[]{1} \\ x=\pm1 \end{gathered}[/tex]

Putting y=-4 in equation (4),

[tex]\begin{gathered} x^2=-4 \\ x=\pm\sqrt[]{-4} \\ x=\pm\sqrt[]{-1\times4} \\ x=\pm2\times\sqrt[]{-1} \\ As\text{ }\sqrt[]{-1}=i, \\ x=\pm2i \end{gathered}[/tex]