Respuesta :

hello

to solve this problem, we would simply use the formula of compound interest

[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ A=\text{compounded interest} \\ p=\text{ principal} \\ r=\text{rate} \\ n=\text{ number of times compounded} \\ t=\text{time} \end{gathered}[/tex]

from this, we can write out our data and then substitute it into the formula

[tex]\begin{gathered} a=\text{ ?} \\ p=100 \\ r=4\text{ \%=0.04} \\ n=12 \\ t=25\text{ years} \end{gathered}[/tex][tex]\begin{gathered} A=p(1+\frac{r}{n})^{nt} \\ A=100\times(1+\frac{0.04}{12})^{12\times25} \\ A=100\times(1+0.003)^{300} \\ A=100\times(1.003)^{300} \\ A=100\times2.456 \\ A=245.6 \end{gathered}[/tex]

in 25 years, i will have the sum of $245.6 after compounding $100 monthly at 4% interest rate