Respuesta :

Start converting the minutes to degrees

[tex]\frac{43}{60}\text{degrees}[/tex]

Then using the trigonometric functions

[tex]\begin{gathered} \sin (38+\frac{43}{60})=\frac{A}{28.75} \\ \cos (38+\frac{43}{60})=\frac{B}{28.75} \end{gathered}[/tex]

solve both expressions for A and B

[tex]\begin{gathered} A=28.75\cdot\sin (38+\frac{43}{60}) \\ B=28.75\cdot\cos (38+\frac{43}{60}) \end{gathered}[/tex]

then add both together to find the total length

[tex]\begin{gathered} 28.75\cdot\sin (38+\frac{43}{60})+28.75\cdot\cos (38+\frac{43}{60})\approx40.41\operatorname{cm} \\ \end{gathered}[/tex]