Look at picture for accurate description and round your final answer to the nearest hundred as needed.

Start converting the minutes to degrees
[tex]\frac{43}{60}\text{degrees}[/tex]Then using the trigonometric functions
[tex]\begin{gathered} \sin (38+\frac{43}{60})=\frac{A}{28.75} \\ \cos (38+\frac{43}{60})=\frac{B}{28.75} \end{gathered}[/tex]solve both expressions for A and B
[tex]\begin{gathered} A=28.75\cdot\sin (38+\frac{43}{60}) \\ B=28.75\cdot\cos (38+\frac{43}{60}) \end{gathered}[/tex]then add both together to find the total length
[tex]\begin{gathered} 28.75\cdot\sin (38+\frac{43}{60})+28.75\cdot\cos (38+\frac{43}{60})\approx40.41\operatorname{cm} \\ \end{gathered}[/tex]