Respuesta :

Given the function

[tex]f(x)=2\cdot4^x[/tex]

Where the range of values of x is -2 to 2

[tex]\begin{gathered} f(x)=2\cdot4^x \\ \text{Where x = -2} \\ f(-2)=2\cdot4^{-2}=\frac{2}{4^2}=\frac{2}{16}=0.125 \\ \text{Where x = -1} \\ f(-1)=2\cdot4^{-1}=\frac{2}{4^1}=\frac{2}{4}=0.5 \\ \text{Where x = 0} \\ f(0)=2\cdot4^0=2\times1=\frac{2}{1}=2 \\ \text{Where x = 1} \\ f(1)=2\cdot4^1=2\times4=8 \\ \text{Where x = 2} \\ f(2)=2\cdot4^2=2\times16=32 \end{gathered}[/tex]

Using the graphing calculator, the graph of the function is shown below

From the graph above,

The graph that represents the given function is the first graph by the left.

Ver imagen KhalfaniV551462