Respuesta :

The given integral is

[tex]\int ^3_0(x^3-6x)dx[/tex]

Recall the fundamental theorem of calculus,

[tex]\int ^b_af(x)dx=F(b)-F(a)[/tex]

The given intergral is

[tex]\int ^b_af(x)dx=\int ^3_0(x^3-6x)dx[/tex][tex]F(x)=\int f(x)dx=\int (x^3-6x)dx[/tex]

Integrating with respect to x, we get

[tex]F(x)=\frac{x^4}{4}-\frac{6x^2}{2}[/tex]

The antiderivative of f is

[tex]F(x)=\frac{x^4}{4}-3x^2[/tex]

Replace x=3 in F(x) to compute F(3).

[tex]F(3)=\frac{(3)^4}{4}-3(3)^2=20.25-27=6.75[/tex]

Replace x=0 in F(x) to compute F(0).

[tex]F(0)=\frac{(0)^4}{4}-3(0)^2=0[/tex]

The given integral is

[tex]\int ^3_0(x^3-6x)dx=F(3)-F(0)[/tex]

Substitute F(3)=6.75 and F(0)=0, we get

[tex]\int ^3_0(x^3-6x)dx=6.75-0[/tex]

Hence the answer is

[tex]\int ^3_0(x^3-6x)dx=6.75=6\frac{3}{4}[/tex]

Otras preguntas