Respuesta :

We have the following system of equations:

[tex]\begin{gathered} 4x+8y=4 \\ -2x-7y=-11\ldots(A) \end{gathered}[/tex]

Solving by combining equations:

If we multiply equation A by 2, we get the following equivalent system:

[tex]\begin{gathered} \\ 4x+8y=4\ldots(B) \\ -4x-14y=-22\ldots(C) \end{gathered}[/tex]

If we add both equation, we have

[tex]8y-14y=4-22[/tex]

which gives

[tex]-6y=-18[/tex]

If we move the coefficient of y, we get

[tex]\begin{gathered} y=\frac{-18}{-6} \\ y=3 \end{gathered}[/tex]

Finally, by substituting this result into equation B, we obtain

[tex]4x+8(3)=4[/tex]

which leads to

[tex]4x+24=4[/tex]

If we move +24 to the right hand side,we get

[tex]\begin{gathered} 4x=4-24 \\ 4x=-20 \end{gathered}[/tex]

and x is given by

[tex]\begin{gathered} x=\frac{-20}{4} \\ x=-5 \end{gathered}[/tex]

Therefore, the answer is

[tex]\begin{gathered} x=-5 \\ y=3 \end{gathered}[/tex]