Respuesta :

We have the integral:

[tex]\int secx(5secx+8tanx)dx[/tex]

We expand the expression:

[tex]\int5sec^2x+8tanxsecxdx[/tex]

Using trigonometric identities we can rewrite:

[tex]\int\frac{5+8sinx}{cos^2x}dx[/tex]

We expand again:

[tex]\int\frac{5}{cos^2x}+\frac{8sinx}{cos^2x}dx[/tex]

We separate the integral as:

[tex]\int\frac{5}{cos^2x}dx+\int\frac{8sinx}{cos^2x}dx[/tex]

By integration rules we have that:

[tex]\int\frac{5}{cos^2x}dx=5tanx[/tex]

And

[tex]8\int\frac{sinx}{cos^2x}dx=8secx[/tex]

All together:

[tex]5tanx+8secx+C[/tex]

This would be the answer with the constant c.

[tex]5tanx+8secx+C[/tex]