Answer:
The expression becomes:
[tex]\begin{gathered} \frac{-29}{2} \\ or \\ -14\text{ }\frac{1}{2} \end{gathered}[/tex]Explanation:
We want to solve the expression:
[tex]4(-6+3)-2\frac{1}{2}[/tex]First of all, notice there is a mixed fraction in the expression. This can be converted into an improper fraction. Doing that, the expressioin becomes:
[tex]4(-6+3)-\frac{5}{2}[/tex]Next, we remove the bracket by multiplying each element in the bracket by 4.
[tex]-24+12-\frac{5}{2}[/tex]Which becomes:
[tex]-12-\frac{5}{2}[/tex]Now, we make this expression a single fraction as:
[tex]\begin{gathered} \frac{-12}{1}-\frac{5}{2}\text{ } \\ =\frac{-24}{2}-\frac{5}{2}\text{ } \\ =\frac{-24-5}{2} \\ \\ =\frac{-29}{2} \end{gathered}[/tex]