Respuesta :

[tex]\text{0.001 (option A)}[/tex]Explanation:[tex]\frac{4\times10^{-6}}{4\times10^{-3}}[/tex][tex]\begin{gathered} \frac{4}{4}\times\frac{10^{-6}}{10^{-3}}\text{ = 1 }\times\frac{10^{-6}}{10^{-3}}\text{ } \\ \text{The base of the numerator and denominator is the same.} \\ We\text{ would bring the exponents together} \end{gathered}[/tex][tex]\begin{gathered} \text{The division betw}en\text{ thenm becomes minus when the exponents are brought together} \\ \frac{10^{-6}}{10^{-3}}\text{ =}10^{-6-(-3)} \\ \text{multiplication of same sign gives positive sign} \\ \text{ =}10^{-6-(-3)}\text{ = =}10^{-6+3} \\ =10^{-3} \\ =\text{ 1}\times10^{-3} \end{gathered}[/tex][tex]\begin{gathered} 10^{-3}=\text{ }\frac{1}{1000} \\ 1\times10^{-3\text{ }}\text{ =1}\times\frac{1}{1000} \\ =\frac{1}{1000}\text{ } \\ \text{= 0.001 (option A)} \end{gathered}[/tex]