Respuesta :

Answer: 45 is a counterexample of the expression

Given:

[tex]\frac{\text{ sec }\theta}{\tan\theta}=\sin\theta[/tex]

Let us first write sec and tan in terms of cos and sin functions:

[tex]\begin{gathered} \frac{\text{sec}\theta}{\tan\theta}=\frac{\frac{1}{\cos\theta}}{\frac{\sin\theta}{\cos\theta}} \\ \Rightarrow\frac{1}{\cos\theta}\times\frac{\cos\theta}{\sin\theta} \\ =\frac{1}{\sin\theta} \end{gathered}[/tex]

We now have:

[tex]\frac{1}{\sin\theta}=\sin\theta[/tex]

As we can see, the two expressions are not equal, therefore:

[tex]\begin{gathered} \frac{1}{\sin(\theta)}\ne\sin(\theta) \\ \frac{1}{\sin(45)}\sin(45) \end{gathered}[/tex]

Since the two expressions are not equal, 45 is a counterexample of the expression.